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ABSTRACT 

The paper deals with the analytic continuation of the geometric series by a 
family of linear transformations into some special domains of the complex 
plane. 

1. Introduction. The problem of analytic continuation by summability may be 
formulated as follows: Letf(z)  have the Taylor expansion 

(1.1) f ( z )  = ~ ak(z -- Zo) k 
k = 0  

with a positive radius of convergence. Two questions arise: (i) What is the domain 
of efficiency of a special linear transformation of (1.1) regarding the analytic 
continuation off(z)?  (ii) Given some domain in the complex plane, does there 
exist a linear transformation of (1.1) which yields the analytic continuation of 
f ( z )  exactly into this domain and nowhere else? 

In some cases, as has been shown by Borel [1], Okada [4] and Vermes [7], 
it is sufficient to focus attention on the continuation of the geometric series 
]~z n, l z] < 1; in this paper we deal only with the above series. In this context, 

Dienes and Cooke [2] have shown that there exist transformations that are 
effective at some distinct points outside the circle of convergence, this result was 
extended by Vermes [8] to a denumerable set of points. Russel [5] and Teghem [6] 
have produced transformations effective, respectively, on Jordan arcs and on 
domains that are not simply-connected. 

DEFINITIONS AND NOTATIONS. Corresponding to a real or complex sequence 
{dk}, (dk ~ -- 1), the generalized Lototski or [F, d J-transform {t,} of a sequence 
{s~} is defined by Jakimovski [3]: 

(1.2) t,, = f l  (dk + 1)-l(dk + E)(so),  
k = l  

where 

n > l  

EP(sk) = sp÷, k > O, p >= O. 

Iflim tn exists as n -~ oo, we say that {sn} is summable IF, d,] to the value lim t~. 
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We shall also use the following method of  summation: For every sequence 
of polynomials {P,(x)} satisfying P,,(1) # 0, the [F*,P,,]-transform of a sequence 
{s,} will be defined by 

(1.3) t* = f i  (Pk(1))-IPk(E)(so), n > 1. 
k = l  

It may easily be seen that if {s,} is the sequence of  partial sums of  the geometric 
series ~z"  (z ~ 1), then in the notation above 

(1.4) t. = (1 -- z)-  1 _ z(1 - z ) -  a f i  (d k + 1)- 1 . (dk + z) 
k = l  

and 

(1.5) t* = (1 - z ) - 1  _ z(1 - z ) - 1  f i  (pk(1))  - 1 .  Pg(z) 
k = l  

It follows that, for z ¢ O, 1, lim,_, ~ t,, = (1 - z) - ~ if and only if 

(1.6) lim fi (d k "k 1)-l(dk + Z) = 0, 
n--*oo k=l  

while lim._, ~ t* = (1 - z)- 1 if and only if 

(1.7) lim f i  
. ~ o ~  k = l  

2. The  main  results.  

(Pk(1))- 1pk(Z ) = O. 

THEOREM 1. Let the polynomial P(z) satisfy 

(2.1) ReP(1) = 0 .  

Then, there exists a fixed sequence {dn} (n > 1)(d n # - 1 )  such that the [F ,d , ] -  
transform sums the geometric series to the value (1 - z)- l for  every z for  which 
ReP(z)  > O, and does not sum it for  every z for  which ReP(z)  < O. The con- 
vergence of the transform is uniform in every bounded closed subset of 
{z; geP(z )  > 0}. 

Proof .  
Clearly we may suppose P(z) ~ const. Then for every k __> 1 

(2.2) P(O + k = + + + 

where p _-> 1, c ~ 0 and c does not depend on k. Define now dl = al ,  d2 = a~,-.., 
d;, = ap, dp+t = a~, ..., d2p = ap, ... and in general if v = #p + p (0 < p ~ p) 
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(2.3) dv = %.+1. 

Now let n = m p  + q (0 ___ q < p); then 

f i  d~+z ~ P ( z ) + k  mv+a d v + z  
(2.4) 

~=1~ d v + l  = ~ P ( 1 ) + k "  I-I d , + l  
~--- H(ln ) • H (2 n) 

k = l  v = m p + l  

where the second factor is 1 if  q = 0. By (2.1), if  11 - z I < ~ then [ReP(z)[ < ½, 
and by (2.2) and (2.3) for 1 < p =< p , / t  ~ 0, 

(2.5) 

thus 

R e V ( -  d.v+p) = - (/~ + 1) -<_ - 1; 

(2.6) I 1 + d, I =>,s>0 

(2.7) In(n) _ z - 1 
,1 2 i - I  YI 1 +  I z  I I 

v=mp+l v = m p + l  

and by (2.6) I II n l _<_ (1 + (I z - 1 , -1  . 
Thus [-[<2 n) is uniformly bounded for every n > 1 and for every z belonging to 

a fixed bounded point-set. 

v = 1,2, ... 

z - 1  

(2.8) ]l-I~')i = f l  t P ( z ) + k l 2  f i  ( 1 +  2kReP(z)+lP(z)12-lP(1)[2.)  
p - ~ ¥ E  -- k2+lP(1)l  2 k = l  k = l  

By a well known theorem on infinite products 

~0 if  ReP(z) < 0 
(2.9) lira 

,-,oo [ oo ifReP(z) > O. 

Also, the convergence to 0 is uniform in every point-set where ReP(z) < - e, 
with e > 0 fixed. (2.9), (2.7), (2.4) and (1.6) prove the theorem. 

EXAMPLE. (i) The Lototski-transform definited by [F, d, = n -  1] sums the 
geometric series for Rez < 1, and does not sum it for Rez > 1, [3]. Here 
P(z) = z - 1. 

(ii) I f  P(z) = e~r(z - 1) with a suitable real ? we obtain as domain of summa- 
bility any given half plane, the boundary of which is a straight line passing 
through z = 1. 

(iii) I f  P(z) = e'~(z - 1) (z - ~ - ifl), with real ~, fl, ?, we obtain as domain 
of  summability the " inside"  or "outs ide"  of  hyperbolas passing through z = 1. 

Next we prove the following theorem: 

THEOREM 2. Let R be a set that contains the point z = 1 and whose complement 
consists either of the point oo or of an unbounded domain. Letf(z) be an analytic 
regular function on R satisfying 
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(2.10) Re f (1)  = 0 .  

Then, there exists a sequence of polynomials {P.(x)} (n_~ 1, Pn(1) # 0) such that 
the [F*,Pn] transformation sums the geometric series to the value (1 - z ) - l  for  
every z ~ R  for  which Re f ( z ) < 0  and does not sum it for  z e R  for  which 
Re f ( z )  > O. 

Proof.  By the well-known theorem of Walsh I9] for every k > 1 there exist 
polynomials Qk(z) satisfying 

(2.11) I Qk(Z) - f ( z )  I < k -  1 

for z ~ R ,  [z I < k, and 

(2.12) Qk(1) =f(1)  k = 1,2,... 

Define 

(2.13) Pk(Z) = Qk(Z) + k k = 1,2,. . .  

By (2.11), (2.12) and (2.13) for any fixed z (]z ] __< k) 

(Pk(1))- 1. pk(z ) = 1 + l'f (z) --f(1)] • k- I + O(k-2). 

Now, by (2.10) and the theory of infinite products, ifz e R 

n l0 for R e f ( z ) < O  
lira [ I-I (Pk(1)) -1 Pk(z)[ = 
,-.~ k=l [ ~  for R e f ( z ) > O .  

By (1.7) this proves the theorem. 

REtaARtC. A generalization of Theorem 2 can be made to the situation where R 
is the union of an increasing sequence of bounded closed sets R~ the complement 
of each of which is an unbounded domain. This result will prove the existence 
of an [F*,P,]-transformation that is effective for ~ in the entire Mittag- 
Leffler star of (1 - z)- 1. It has to be mentioned that the IF*, P,]-transformations 
are row-finite. Because of the length of proof we only state the following result too: 

THEOREM 3. Let D be an union of a finite number of simply-connected bounded 
domains having Jordan boundaries. Let z = 1 lie on the boundary, and let E 
be a closed subset of the complement of D. Then there exists an [F*,Pn]-trans- 

formation, which sums the geometric series to the sum (1 - z)-1 for  every z ~ D 
and does not sum if  for  every z ~ E. 
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