ANALYTIC CONTINUATION BY SUMMATION-METHODS

BY

AMRAM MEIR

ABSTRACT

The paper deals with the analytic continuation of the geometric series by a family of linear transformations into some special domains of the complex plane.

1. Introduction. The problem of analytic continuation by summability may be formulated as follows: Let f(z) have the Taylor expansion

(1.1)
$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$

with a positive radius of convergence. Two questions arise: (i) What is the domain of efficiency of a special linear transformation of (1.1) regarding the analytic continuation of f(z)? (ii) Given some domain in the complex plane, does there exist a linear transformation of (1.1) which yields the analytic continuation of f(z) exactly into this domain and nowhere else?

In some cases, as has been shown by Borel [1], Okada [4] and Vermes [7], it is sufficient to focus attention on the continuation of the geometric series $\sum z^n$, |z| < 1; in this paper we deal only with the above series. In this context, Dienes and Cooke [2] have shown that there exist transformations that are effective at some distinct points outside the circle of convergence; this result was extended by Vermes [8] to a denumerable set of points. Russel [5] and Teghem [6] have produced transformations effective, respectively, on Jordan arcs and on domains that are not simply-connected.

DEFINITIONS AND NOTATIONS. Corresponding to a real or complex sequence $\{d_k\}, (d_k \neq -1)$, the generalized Lototski or $[F, d_n]$ -transform $\{t_n\}$ of a sequence $\{s_n\}$ is defined by Jakimovski [3]:

(1.2)
$$t_n = \prod_{k=1}^n (d_k + 1)^{-1} (d_k + E)(s_0), \qquad n \ge 1$$

where

$$E^{p}(s_{k}) = s_{p+k} \qquad \qquad k \ge 0, \ p \ge 0.$$

If $\lim t_n$ exists as $n \to \infty$, we say that $\{s_n\}$ is summable $[F, d_n]$ to the value $\lim t_n$.

We shall also use the following method of summation: For every sequence of polynomials $\{P_n(x)\}$ satisfying $P_n(1) \neq 0$, the $[F^*, P_n]$ -transform of a sequence $\{s_n\}$ will be defined by

(1.3)
$$t_n^* = \prod_{k=1}^n (P_k(1))^{-1} P_k(E)(s_0), \qquad n \ge 1.$$

It may easily be seen that if $\{s_n\}$ is the sequence of partial sums of the geometric series $\sum z^n$ ($z \neq 1$), then in the notation above

(1.4)
$$t_n = (1-z)^{-1} - z(1-z)^{-1} \prod_{k=1}^n (d_k+1)^{-1} \cdot (d_k+z)$$

and

(1.5)
$$t_n^* = (1-z)^{-1} - z(1-z)^{-1} \prod_{k=1}^n (P_k(1))^{-1} \cdot P_k(z)$$

It follows that, for $z \neq 0, 1$, $\lim_{n \to \infty} t_n = (1 - z)^{-1}$ if and only if

(1.6)
$$\lim_{n \to \infty} \prod_{k=1}^{n} (d_k + 1)^{-1} (d_k + z) = 0,$$

while $\lim_{n\to\infty} t_n^* = (1-z)^{-1}$ if and only if

(1.7)
$$\lim_{n \to \infty} \prod_{k=1}^{n} (P_k(1))^{-1} P_k(z) = 0.$$

2. The main results.

THEOREM 1. Let the polynomial P(z) satisfy

(2.1)
$$ReP(1) = 0$$

Then, there exists a fixed sequence $\{d_n\} (n \ge 1) (d_n \ne -1)$ such that the $[F, d_n]$ -transform sums the geometric series to the value $(1 - z)^{-1}$ for every z for which ReP(z) > 0, and does not sum it for every z for which ReP(z) < 0. The convergence of the transform is uniform in every bounded closed subset of $\{z; ReP(z) > 0\}$.

Proof.

Clearly we may suppose $P(z) \neq \text{const.}$ Then for every $k \ge 1$

(2.2)
$$P(z) + k = c(z + a_1^k)(z + a_2^k) \cdots (z + a_p^k)$$

where $p \ge 1$, $c \ne 0$ and c does not depend on k. Define now $d_1 = a_1^1, d_2 = a_2^1, \dots, d_p^{\mathfrak{E}} = a_p^1, d_{p+1} = a_1^2, \dots, d_{2p} = a_p^2, \dots$ and in general if $v = \mu p + \rho$ $(0 < \rho \le p)$

[December

(2.3)
$$d_{y} = a_{a}^{\mu+1}$$
.

Now let n = mp + q ($0 \le q < p$); then

(2.4)
$$\prod_{\nu=1}^{n} \frac{d_{\nu}+z}{d_{\nu}+1} = \prod_{k=1}^{m} \frac{P(z)+k}{P(1)+k} \cdot \prod_{\nu=mp+1}^{mp+q} \frac{d_{\nu}+z}{d_{\nu}+1} \equiv \prod_{1}^{(n)} \cdot \prod_{2}^{(n)}$$

where the second factor is 1 if q = 0. By (2.1), if $|1 - z| < \delta$ then $|ReP(z)| < \frac{1}{2}$, and by (2.2) and (2.3) for $1 \le \rho \le p$, $\mu \ge 0$,

(2.5)
$$ReP(-d_{\mu p+\rho}) = -(\mu+1) \leq -1;$$

thus

(2.6)
$$|1+d_{\nu}| \ge \delta > 0$$
 $\nu = 1, 2, \cdots$

(2.7)
$$\left|\prod_{2}^{(n)}\right| = \left|\prod_{\nu=mp+1}^{mp+q} \left(1 + \frac{z-1}{d_{\nu}+1}\right)\right| \leq \prod_{\nu=mp+1}^{mp+q} \left(1 + \left|\frac{z-1}{d_{\nu}+1}\right|\right),$$

and by (2.6) $\left| \prod_{2}^{(n)} \right| \leq (1 + (|z - 1|)/\delta)^{p-1}$.

Thus $\prod_{2}^{(n)}$ is uniformly bounded for every $n \ge 1$ and for every z belonging to a fixed bounded point-set.

$$(2.8) \left| \prod_{1}^{(n)} \right|^{2} = \prod_{k=1}^{m} \left| \frac{P(z)+k}{P(1)+k} \right|^{2} = \prod_{k=1}^{m} \left(1 + \frac{2k \operatorname{Re} P(z)+|P(z)|^{2}-|P(1)|^{2}}{k^{2}+|P(1)|^{2}} \right)$$

By a well known theorem on infinite products

(2.9)
$$\lim_{n\to\infty} \prod_{1}^{(n)} = \begin{cases} 0 & \text{if } ReP(z) < 0 \\ \infty & \text{if } ReP(z) > 0 . \end{cases}$$

Also, the convergence to 0 is uniform in every point-set where $ReP(z) \leq -\varepsilon$, with $\varepsilon > 0$ fixed. (2.9), (2.7), (2.4) and (1.6) prove the theorem.

EXAMPLE. (i) The Lototski-transform definited by $[F, d_n = n - 1]$ sums the geometric series for Rez < 1, and does not sum it for Rez > 1, [3]. Here P(z) = z - 1.

(ii) If $P(z) = e^{i\gamma}(z-1)$ with a suitable real γ we obtain as domain of summability any given half plane, the boundary of which is a straight line passing through z = 1.

(iii) If $P(z) = e^{i\gamma}(z-1) (z - \alpha - i\beta)$, with real α , β , γ , we obtain as domain of summability the "inside" or "outside" of hyperbolas passing through z = 1.

Next we prove the following theorem:

THEOREM 2. Let R be a set that contains the point z = 1 and whose complement consists either of the point ∞ or of an unbounded domain. Let f(z) be an analytic regular function on R satisfying

226

(2.10)
$$Ref(1) = 0$$
.

Then, there exists a sequence of polynomials $\{P_n(x)\}$ $(n \ge 1, P_n(1) \ne 0)$ such that the $[F^*, P_n]$ transformation sums the geometric series to the value $(1 - z)^{-1}$ for every $z \in R$ for which Re f(z) < 0 and does not sum it for $z \in R$ for which Re f(z) > 0.

Proof. By the well-known theorem of Walsh [9] for every $k \ge 1$ there exist polynomials $Q_k(z)$ satisfying

(2.11)
$$|Q_k(z) - f(z)| < k^{-1}$$

for $z \in R$, $|z| \leq k$, and

(2.12)
$$Q_k(1) = f(1)$$
 $k = 1, 2, \cdots$

Define

(2.13)
$$P_k(z) = Q_k(z) + k$$
 $k = 1, 2, \cdots$

By (2.11), (2.12) and (2.13) for any fixed z ($|z| \le k$)

$$(P_k(1))^{-1} \cdot P_k(z) = 1 + [f(z) - f(1)] \cdot k^{-1} + O(k^{-2}).$$

Now, by (2.10) and the theory of infinite products, if $z \in R$

$$\lim_{n \to \infty} \left| \prod_{k=1}^{n} (P_k(1))^{-1} P_k(z) \right| = \begin{cases} 0 & \text{for } Re f(z) < 0 \\ \infty & \text{for } Re f(z) > 0. \end{cases}$$

By (1.7) this proves the theorem.

REMARK. A generalization of Theorem 2 can be made to the situation where R is the union of an increasing sequence of bounded closed sets R_i the complement of each of which is an unbounded domain. This result will prove the existence of an $[F^*, P_n]$ -transformation that is effective for $\sum z^n$ in the entire Mittag-Leffler star of $(1-z)^{-1}$. It has to be mentioned that the $[F^*, P_n]$ -transformations are row-finite. Because of the length of proof we only state the following result too:

THEOREM 3. Let D be an union of a finite number of simply-connected bounded domains having Jordan boundaries. Let z = 1 lie on the boundary, and let E be a closed subset of the complement of D. Then there exists an $[F^*, P_n]$ -transformation, which sums the geometric series to the sum $(1 - z)^{-1}$ for every $z \in D$ and does not sum if for every $z \in E$.

REFERENCES

1. Borel, B., 1928, Leçons sur les series divergentes, 2nd ed. Paris.

^{2.} Cooke, R. G., and Dienes, P., 1937, The effective range of generalized limit processes, *Proc. London Math. Soc.*, 12, 299-304.

AMRAM MEIR

3. Jakimovski, A., 1959, A generalization of the Lototski-method of summability, Mich. Math. J. 6, 277-290.

4. Okada, S. Y., 1925, Über die Annäherung analytischer Funktionen, Math. Z., 23, 62-71.

5. Russel, D. C., 1959, Summability of power series on continuous arcs outside the circle of convergence, Bull. Acad. Roy. Belg., 45, 1006-1030.

6. Teghem, T., 1958, Sur des extensions d'une méthode de prolongement analytique de Borel, Colloque sur la théorie des suites, Bruxelles, (1957), 87-95.

7. Vermes, P., 1952, Convolution of summability methods, J. d'Analyse Math., 160-177.

8. Vermes, P., 1958, Summability of power series at unbounded sets of isolated points, Bull. Acad. Roy. Belg., 44, 830-838.

9. Walsh, T. L., 1935, Interpolation and approximation by rational functions in the complex domain, *Amer. Math. Soc. Coll. Publ.* vol. XX.

THE HEBREW UNIVERSITY OF JERUSALEM

228